The development of physical geodesy during 1984-2014 – A personal review

This article is a personal review of the development of physical geodesy during 1984-2014. The period is characterized by an intensive advance in both data and theory to meet the growing technical demands in GPS/GNSS applications and scientific needs in geoscience. As a result,many parts of theworld are nowmapped with a 1cmdetailed geoid model, and the global long- to mediumwavelengths of the gravity field and geoid are homogeneously determined to 1 mGal and 1 cm by satellite-only dedicated satellite gravity missions. The future can expect to see even higher demands for accuracy and reliability to satisfy the specifications for a pure geoid model based vertical datum.

References

Amante C, Eakins BW, 2009, ETOPO1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24 Search in Google Scholar

Ågren J, Sjöberg L E, 2013, Errors in geoid and quasigeoid models as propagated from systematic uncertainties in the digital elevation model. Presented at the IAG Conference, Potsdam, October 1-6, 2013 Search in Google Scholar

Ågren J, Sjöberg L E, 2014, Investigations of the requirements for a future 5mmquasigeoid model over Sweden. In UMarti (Ed.): Gravity, geoid and height systems, Springer Symposia, pp. 143-150. 10.1007/978-3-319-10837-7_18 Search in Google Scholar

Ågren J, Sjöberg L E and Kiamehr R, 2009, The new gravimetric geoid model KTH08 over Sweden. J of Applied Geodesy 3: 143-153 10.1515/JAG.2009.015 Search in Google Scholar

Bagherbandi M, Sjöberg L E, 2013, Improving Gravimetric-Isostatic Models of Crustal Depth by Correcting for Non-Isostatic Effects and Using CRUST2.0, Earth-Science Reviews 117(2013): 29-39 10.1016/j.earscirev.2012.12.002 Search in Google Scholar

Bjerhammar A, 1962, Gravity reduction to an internal sphere. Royal Institute of Technology, Division of Geodesy, Stockholm, Sweden Bjerhammar A, 1973, Theory of errors and generalized matrix inverses. Elsevier Scientific Publ. Co. Search in Google Scholar

Dayoub N, Edwards S J, More P, 2012, The Gauss-Listing potential value W0 and its rate from altimetric mean sea level and GRACE. J Geod 86: 681-694 10.1007/s00190-012-0547-6 Search in Google Scholar

Ellmann A, Sjöberg LE, 2004, Ellipsoidal correction for the modified Stokes formula. Boll Geod Sci Aff 63: 153-172 Search in Google Scholar

Ellmann A, Vanicek P, 2007, UNB application of Stokes-Helmert‘s approach to geoid computation, J Geodyn 43: 200-2013 10.1016/j.jog.2006.09.019 Search in Google Scholar

Flury J, Rummel R, 2009, On the geoid-quasigeoid separation in mountain areas. J Geod 83: 829-847 10.1007/s00190-009-0302-9 Search in Google Scholar

Forsberg R, 1990, A new high-resolution geoid of the Nordic area. In Rapp R H, Sanso F (Eds.): Determination of the geoid. IAG Symposium 106, Springer 10.1007/978-1-4612-3104-2_29 Search in Google Scholar

Forsberg R, 1993, Modelling the fine structure of the geoid: methods, data requirements and some result. Surveys in Geophys 14: 403- 418 10.1007/BF00690568 Search in Google Scholar

Forsberg R, 1999, The NKG-1996 geoid. In Jonsson B (Ed.): Proc. 13th general meeting of the NKG, The National Land Survey,Gävle, Sweden Search in Google Scholar

Forsberg R, 2001, Development of a Nordic cm-geoid – with basics of geoid determination. In Harsson B G (Ed.): Lecture notes for NKGautumnschool, 28 Aug.-2 Sept., 2000, Fevik, Norway, Statens Kartverk, Hönefoss, Norway Search in Google Scholar

Heiskanen WA, Moritz H, 1967, Physical Geodesy, W H Freeman and Co, San Francisco and London 10.1007/BF02525647 Search in Google Scholar

Krarup T, 1969, A contribution to the mathematical foundation of physical geodesy. Geodaetsk Insititut, Meddelelse No. 44, Copenhagen. Also in K Borre (Ed.):Mathematical Foundation of Geodesy- Selected papers of T Krarup, Springer, 2006. Search in Google Scholar

Martinec Z, Matyska C, Grafarend E W, Vanicek P, 1993, On Helmert’s 2nd condensation method. Manuscr Geod 18: 417-421 Search in Google Scholar

Molodensky MS, Eremeev VF, Yurkina MI, 1962, Methods for Study of the External Gravitational Field and Figure of the Earth. Tranls. From Russian (1960), Israel program for Scientific Translations, Jerusalem, Israel Search in Google Scholar

Moritz H, 1980, Advanced Physical geodesy. Herbert Wichmann Verlag, Karlsruhe Search in Google Scholar

Moritz H, 1984, The geodetic reference system 1980. Bull Geod 58(3): 388-398 10.1007/BF02519014 Search in Google Scholar

Moritz H, 1990, The figure of the earth. Wichmann, Karlsruhe Search in Google Scholar

Pavlis N K., Factor K, and Simon A. Holme S A, 2006, Terrain-Related Gravimetric Quantities Computed for the Next EGM. Presented at the 1st International symposium of the International gravity service 2006, August 28-September 1, Istanbul, Turkey. Search in Google Scholar

Pavlis N A, Simon A H, Kenyon S C, Factor J K, 2012, The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008). JGR 117, B04406 10.1029/2011JB008916 Search in Google Scholar

Rummel R, Sjöberg L, Rapp R H, 1977, The determination of gravity anomalies from geoid heights. Dept Geod Sci Report No. 269,OSU, Columbus, OH Search in Google Scholar

Sansó F, Sideris, M G (Eds.), 2013, Geoid determination - Theory and Methods. Springer 10.1007/978-3-540-74700-0 Search in Google Scholar

Sideris M, Forsberg R, 1990, Review of prediction methods in mountainous regions. In Rapp, R H, Sanso F (Eds.): Determination of the geoid, present and future, IAG Symposia 106, Springer. 10.1007/978-1-4612-3104-2_8 Search in Google Scholar

Sjöberg LE, 1975, On the Discrete Boundary Value Problem of Physical Geodesy with harmonic Reduction to an Internal Sphere. Ph.D. Dissertation, KTH, Stockholm Search in Google Scholar

Sjöberg L E, 1977, On the Errors of Spherical Harmonic Developments of Gravity at the Surface of the Earth. Department of Geodetic Science, Report No 257, OSU, Columbus, OH. 10.21236/ADA052713 Search in Google Scholar

Sjöberg LE, 1978, A Comparison of Bjerhammar’s Methods and Collocation in Physical Geodesy. Dept Geodetic Science Report No. 273, OSU, Columbus, OH 10.21236/ADA063194 Search in Google Scholar

Sjöberg L E, 1981, Least Squares Combination of Satellite and Terrestrial Data in Physical Geodesy. Ann. Geophys., 37(1): 25-30 Search in Google Scholar

Sjöberg L E, 1982, On the Recovery of Geopotential Coeflcients using Satellite-to-Satellite Range-Rate Data on a Sphere. Bull Geod 56(1): 27-39 10.1007/BF02525605 Search in Google Scholar

Sjöberg LE, 1984a, Least squares modification of Stokes’ and Vening Meinesz’ formulas by accounting for truncation and potential coeflcient errors. manuscr geod 9: 209-229 Search in Google Scholar

Sjöberg LE, 1984b, Least squares modification of Stokes’ and Vening Meinesz’ formulas by accounting for errors of truncation, potential coeflcients and gravity data. Dept of Geodesy Rep No 27, Univ of Uppsala, Uppsala, Sweden Search in Google Scholar

Sjöberg LE, 1991, Refined least squares modification of Stokes’ formula. manuscr geod 16: 367-375 Search in Google Scholar

Sjöberg LE, 1999, The IAG approach to the atmospheric geoid correction in Stokes formula and a new strategy, J. of Geodesy, 73(7):362- 366 10.1007/s001900050254 Search in Google Scholar

Sjöberg LE, 2000, On the topographic effects by the Stokes-Helmert method of geoid and quasi-geoid determinations. J Geod 74(2): 255-268 10.1007/s001900050284 Search in Google Scholar

Sjöberg L E, 2003a, A general model for modifying Stokes’ formula and its least-squares solution. J Geod 77: 459-464 10.1007/s00190-003-0346-1 Search in Google Scholar

Sjöberg LE, 2003b, A computational scheme to model the geoid by the modified Stokes’s formula without gravity reductions. J Geod 77(2003): 423-432 10.1007/s00190-003-0338-1 Search in Google Scholar

Sjöberg LE, 2003c, A solution to the downward continuation effect on the geoid determined by Stokes’ formula. J. Geod 77: 94-100 10.1007/s00190-002-0306-1 Search in Google Scholar

Sjöberg LE, 2003d, The ellipsoidal corrections to order e2 of geopotential coeflcients and Stokes’ formula. J Geod 77: 139-147 10.1007/s00190-003-0321-x Search in Google Scholar

Sjöberg LE, 2004, The effect on the geoid of lateral topographic density variations. J Geod 78:34-39 10.1007/s00190-003-0363-0 Search in Google Scholar

Sjöberg LE, 2005, Discussion on the approximations made in the practical implementation of the remove-compute-restore technique in regional geoid modelling. J Geod 78: 645-653 10.1007/s00190-004-0430-1 Search in Google Scholar

Sjöberg LE, 2007, The topographic bias by analytical continuation in physical geodesy. J Geod 81: 345-350 10.1007/s00190-006-0112-2 Search in Google Scholar

Sjöberg LE, 2009a, The terrain correction in gravimetric geoid determination – is it needed? Geophys J Int 176:14-18 10.1111/j.1365-246X.2008.03851.x Search in Google Scholar

Sjöberg LE, 2009b, On the topographic bias in geoid determination by the external gravity field, J Geod 83:967-972 10.1007/s00190-009-0314-5 Search in Google Scholar

Sjöberg LE, 2009c, Solving the topographic bias as an Initial Value Problem. Art. Sat. 44 (3):77-84 10.2478/v10018-009-0021-8 Search in Google Scholar

Sjöberg LE, 2009d, Solving Vening-Meinesz-Moritz inverse problem in isostasy, Geophys. J Int. 179: 1527-1536 10.1111/j.1365-246X.2009.04397.x Search in Google Scholar

Sjöberg L E, 2010, A strict formula for geoid-to-quasigeoid separation. J Geod 84: 699-702 10.1007/s00190-010-0407-1 Search in Google Scholar

Sjöberg L E, 2011a, Quality estimates in geoid computation by EGM08. JGS 1(2011): 361-366 10.2478/v10156-011-0014-y Search in Google Scholar

Sjöberg L E, 2011b, Local least squares spectral filtering and combination by harmonic functions on the sphere. J Geod Sci 1(2011):355- 360 10.2478/v10156-011-0015-x Search in Google Scholar

Sjöberg L E, 2012, The geoid-to-quasigeoid difference using an arbitrary gravity reduction model. Stud Geophys Geod 56: 929-933 10.1007/s11200-011-9037-1 Search in Google Scholar

Sjöberg LE, 2013a, The geoid or quasigeoid- which reference surface should be preferred for a national height system? J Geod Sci 3: 103-109 10.2478/jogs-2013-0013 Search in Google Scholar

Sjöberg L E, 2013b, New solutions for the geoid potential W0 and the Mean Earth Ellipsoid dimensions. J Geod Sci 3(2013): 258-265 10.2478/jogs-2013-0031 Search in Google Scholar

Sjöberg, L E, 2013c, On the isostatic gravity anomaly and disturbance and their applications to Vening Meinesz-Moritz inverse problem of isostasy, Geophys J Int 193: 1277-1282 10.1093/gji/ggt008 Search in Google Scholar

Sjöberg L E, 2014, On the topographic effects by Stokes’ formula. J Geod Sci 4: 130-135 10.2478/jogs-2014-0014 Search in Google Scholar

Sjöberg L E, 2015, The secondary indirect topographic effect in physical geodesy, Stud Geophys Geod (on-line) 10.1007/s11200-014-1003-2 Search in Google Scholar

Sjöberg L E, Bagherbandi M, Tenzer R, 2015, On gravity inversion by the no-topography and rigorous isostatic gravity anomalies, Pure and Appl. Geophys. (on-line) 10.1007/s00024-015-1032-y Search in Google Scholar

Sjöberg L E, Ågren J, 2002, Some problems in the theory used for the NKG geoid model. In M. Poutanen and H. Suurmäki (Eds.): Proc. 14th General Meeting of the Nordic Geodetic Commission, Publ. from the Finnish Geodetic Institute, 2002, pp. 121-130. Search in Google Scholar

Sjöberg L E, Bagherbandi M, 2011, A method of Estimating the Moho density contrast with a tentative application of EGM08 and CRUST2.0. Acta Geophys (2011)59(3): 502-525 10.2478/s11600-011-0004-6 Search in Google Scholar

Tenzer R, Bagherbandi M, 2012, Reformulation of the Vening Meinesz-Moritz inverse problem of isostasy for isostatic gravity disturbances. Int J Geosci 3: 918-929 10.4236/ijg.2012.325094 Search in Google Scholar

Tscherning C C, 1983, Determination of a (quasi) geoid for the Nordic countries from heterogeneous data using collocation. In: Proc. 9th General Meeting of the NKG, Sept 1982, Swedish National Land Survey, Gävle, Sweden. Search in Google Scholar

Tscherning C C, Forsberg R, 1986, Geoid determination in the Nordic countries- a staus report. In Kakkuri J (Ed.): Proc. 10th general Meeting of the NKG, Helsinki, 29 Sept.- 3 Oct., 1986, Finnish Geodetic Institute, Helsinki Search in Google Scholar

Tziavos I N, Sideris M, 2013, Topographic reductions in gravity and geoid modeling, In: Sansó and Sideris, M (Eds.) Geoid determination - Theory and Methods, Lecture Notes in Earth System Sciences, Springer, Ch. 8. 10.1007/978-3-540-74700-0_8 Search in Google Scholar

Vajda P, Vaníček P, Meurers B, 2006, A new physical foundation for anomalous gravity. Stud Geophys Geod 50(2): 182-216 10.1007/s11200-006-0012-1 Search in Google Scholar

Vanicek P, Kingdon R and Santos, 2012, Geoid versus quasigeoid: a case of physics versus geometry, Contr. Geo- phys. Geod. 42, 1, 101-117. 10.2478/v10126-012-0004-9 Search in Google Scholar

aníček P, Kleusberg A, 1987, The Canadian geoid – Stokesian approach. manusc geod 12: 86-98 Search in Google Scholar

Vaníček P, Sjöberg L, 1991, Reformulation of Stokes’s theory for higher than second-degree reference field and modification of integration kernels, J Geophys Res 96(B4): 6529-6540 10.1029/90JB02782 Search in Google Scholar

Vaníček P et al., 2013, Testing Stokes-helmert geoid model computation on a synthetic gravity field: experiences and shortcomings. Stud Geophys Geod 57: 369-400 10.1007/s11200-012-0270-z Search in Google Scholar

Wang Y M, Rapp R H, 1990, Terrain effects on geiod undulation computations. Manuscr Geod 15: 23-29 Search in Google Scholar

Wenzel H-G, 1981, Zur Geoid bestimmung durch Kombination von Schwereanomalien und einem Kugelfunktionsmodell mit hilfe von Integralformeln. ZfV 106(3): 102- 111 Search in Google Scholar

Wenzel H-G, 1982, Geoid computation by least squares spectral combination using integral kernels. Presented paper, IAG General Meting, Tokyo. Search in Google Scholar

Wong L, Gore R, 1969, Accuracy of geoid heights from modified Stokes kernels. Geophys J R astr Soc 18: 81-91 10.1111/j.1365-246X.1969.tb00264.x Search in Google Scholar

Yildiz H, Forsberg R, Ågren J, Tscherning CC, Sjöberg LE, 2012, Comparison of remove-compute-restore and least squares modification of Stokes’ formula techniques to quasi-geoid determination over the Auvergne test area. J Geod Sci 2(2012): 53-64. 10.2478/v10156-011-0024-9 Search in Google Scholar

Yionoulis, S M, Pisacane, V L, 1985, Geopotential research mission: status report. IEEE Transactions on Geoscience and Remote sensing, Vol. GE-23 (4) 10.1109/TGRS.1985.289442 Search in Google Scholar